The University of Texas at Austin Dept. of Electrical and Computer Engineering
 Midterm \#2 Version 2.0

Date: November 7, 2023
Course: EE 313 Evans

Name: \qquad
Last,
First

- This in-person exam is scheduled to last 75 minutes.
- Open books, open notes, and open class materials, including homework assignments and solution sets and previous midterm exams and solutions.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network.
- Please disable all wireless connections on your calculator(s) and computer system(s).
- Please mute all computer systems.
- Please turn off all phones.
- No headphones are allowed.
- All work should be performed on the midterm exam. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	27		System Properties
2	24		Convolution
3	27		System Identification
4	22		Filter Design
Total	100		

Problem 2.1. System Properties. 27 points.
Each discrete-time system has input $x[n]$ and output $y[n]$, and $x[n]$ and $y[n]$ might be complex-valued.
Determine if each system is linear or nonlinear, time-invariant or time-varying, and bounded-input bounded-output (BIBO) stable or unstable.
You must either prove that the system property holds in the case of linearity, time-invariance, or stability, or provide a counter-example that the property does not hold. Providing an answer without any justification will earn 0 points.

Part	System Name	System Formula	Linear?	Time-Invariant?	BIBO Stable?
(a)	First-Order Difference Filter	$y[n]=x[n]-x[n-1]$ for $n \geq 0$ and $x[-1]=0$	Yes	Yes	Yes
(b)	Amplitude Modulation	$y[n]=x[n] \cos \left(\widehat{\omega}_{0} n\right)$ for $n \geq 0$ where $\widehat{\omega}_{0}$ is a constant	Yes	No	Yes
(c)	Exponentiation	$y[n]=e^{x[n]}$ for $-\infty<n<\infty$	No	Yes	Yes

Linearity. We'll first apply the all-zero input test. If the output is not zero for all time, then the system is not linear. Otherwise, we'll have to apply the definitions for homogeneity and additivity. All-zero input test is a special case of homogeneity $a x[n] \rightarrow a y[n]$ when the constant $a=0$.
Stability. Bounded input $|\boldsymbol{x}[\boldsymbol{n}]| \leq B<\infty$ would give bounded output $|\boldsymbol{y}[n]| \leq C<\infty$.
(a) First-Order Difference Filter: $y[n]=x[n]-x[n-1]$ for $n \geq 0$ and $x[-1]=0$. 9 points.

Linearity: Passes all-zero input test. Initial condition is zero, necessary for LTI to hold.

- Homogeneity: Input $a x[n]$. Output is
$y_{\text {scaled }}[n]=(a x[n])-(a x[n])_{n \rightarrow n-1}=a x[n]-a x[n-1]=a y[n]$. YES.
- Additivity. Input $x_{1}[n]+x_{2}[n]$. Output is
$y_{\text {additive }}[n]=\left(x_{1}[n]+x_{2}[n]\right)-\left(x_{1}[n]+x_{2}[n]\right)_{n \rightarrow n-1}=\left(x_{1}[n]+x_{2}[n]\right)-\left(x_{1}[n-\right.$
$\left.1]+x_{2}[n-1]\right)=x_{1}[n]-x_{1}[n-1]+x_{2}[n]-x_{2}[n-1]=y_{1}[n]-y_{2}[n]$. YES.
T-I: Input $x\left[n-n_{0}\right]$. Output $y_{\text {shifted }}[n]=x\left[n-n_{0}\right]+x\left[n-n_{0}-1\right]=y\left[n-n_{0}\right]$. YES.
Stability: $|y[n]|=|x[n]-x[n-1]| \leq|x[n]|+|x[n-1]|=B+B=2 B$. YES.
(b) Amplitude Modulation: $y[n]=x[n] \cos \left(\widehat{\omega}_{0} n\right)$ for $n \geq 0$ where $\widehat{\omega}_{0}$ is a constant. 9 points. HW 5.2

Linearity: Passes all-zero input test. No initial conditions.

- Homogeneity: Input $a x[n]$. Output $y_{\text {scaled }}[n]=(a x[n]) \cos \left(\widehat{\omega}_{0} n\right)=a y[n]$. YES.
- Additivity. Input $x_{1}[n]+x_{2}[n]$. Output is
$\boldsymbol{y}_{\text {additive }}[n]=\left(x_{1}[n]+x_{2}[n]\right) \cos \left(\widehat{\omega}_{0} n\right)$
$y_{\text {additive }}[n]=x_{1}[n] \cos \left(\widehat{\omega}_{0} n\right)+x_{2}[n] \cos \left(\widehat{\omega}_{0} n\right)=y_{1}[n]+y_{2}[n]$. YES.
T-I: Input $x\left[n-n_{0}\right]$. Output $y_{\text {shifted }}[n]=x\left[n-n_{0}\right] \cos \left(\widehat{\omega}_{0} n\right) \neq y\left[n-n_{0}\right]$. NO.
Stability: $|y[n]|=\left|x[n] \cos \left(\widehat{\omega}_{0} n\right)\right| \leq|x[n]|\left|\cos \left(\widehat{\omega}_{0} n\right)\right| \leq B$ because $\left|\cos \left(\widehat{\omega}_{0} n\right)\right| \leq 1$. YES.
(c) Exponentiation: $y[n]=e^{x[n]}$ for $-\infty<n<\infty$. 9 points.

Linearity: Does not pass the all-zero input test; i.e., when $x[n]=0, y[n]=e^{0}=1 \neq 0$. NO.
T-I: Input $\boldsymbol{x}\left[\boldsymbol{n}-\boldsymbol{n}_{0}\right]$. Output $\boldsymbol{y}_{\text {shifted }}[\boldsymbol{n}]=\boldsymbol{e}^{\boldsymbol{x}\left[\boldsymbol{n}-\boldsymbol{n}_{0}\right]}=\boldsymbol{y}\left[\boldsymbol{n}-\boldsymbol{n}_{0}\right]$. Pointwise systems are T-I. YES.
Stability: $|y[n]|=\left|e^{x[n]}\right|=\left|e^{x_{\text {real }}[n]+j x_{\text {imag }}[n]}\right|=\left|e^{x_{\text {real }}[n]}\right|\left|e^{j x_{\text {imag }}[n]}\right| \leq\left|e^{x_{\text {real }}[n]}\right| \leq e^{\left|x_{\text {real }}[n]\right|} \leq 1+e^{B}$ because $\boldsymbol{e}^{\boldsymbol{v}}$ is a non-negative monotonic function of real variable \boldsymbol{v}. YES.

Problem 2.2 Convolution. 24 points.
(a) Compute and plot $y[n]=h[n] * x[n]$ using the discrete-time rectangular pulses below. 12 points.

$$
y[n]=h[0] x[n]+h[1] x[n-1]=x[n]+x[n-1]
$$

(b) Compute and plot $y[n]=h[n] * x[n]$ using the discrete-time rectangular pulses below. 12 points.

$$
h[n]=\left[\begin{array}{cc}
1 & \text { for } 0 \leq n \leq L_{h}-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
x[n]=\left[\begin{array}{cc}
1 & \text { for } 0 \leq n \leq L_{x}-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Same as HW 7.1(a)iii.
where $L_{h}<L_{x}$ and both L_{h} and L_{x} are positive integers. Give your answer in terms of L_{h} and L_{x}.
Define $L_{\text {min }}=\min \left(L_{h}, L_{x}\right)$ and $L_{\max }=\max \left(L_{h}, L_{x}\right)$. Convolution result is a causal trapezoid of $L_{y}=L_{h}+L_{x}-1$ samples in duration.

$$
y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=0}^{L_{h}-1} h[k] x[n-k]
$$

There are five cases for flip-and-slide convolution to consider:

1. No overlap. $\boldsymbol{n}<\mathbf{0}$. Amplitude is $\mathbf{0}$.

Alternate solution using MATLAB:

$$
\begin{aligned}
& \mathrm{h}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] ; \\
& \mathrm{x}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] ;
\end{aligned}
$$

$$
y=\operatorname{conv}(h, x) ; \quad \% \quad\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 1
\end{array}\right]
$$

2. Partial overlap. $0 \leq n \leq L_{\text {min }}-1$. Amplitude is $(n+1)$. Initial overlap of one sample at $n=0$ with a product of one. Each shift by one in \boldsymbol{n} adds one more overlapping sample with product of one.

$$
y[n]=\sum_{k=0}^{n} h[k] x[n-k]=\sum_{k=0}^{n} 1=(n+1)
$$

3. Complete overlap. $L_{\text {min }}-1 \leq n \leq L_{\max }-1$. Amplitude is $\boldsymbol{L}_{\text {min }}$. Here, $L_{\text {min }}$ samples overlap, and each sample has a value of one.
4. Partial overlap. $L_{\max } \leq n \leq L_{y}-1$. Amplitude is $L_{y}-n$. Amplitude reduces by one each time \boldsymbol{n} is incremented.

$$
\begin{aligned}
& y[n]=\sum_{k=n-\left(L_{x}-1\right)}^{L_{h}-1} 1=\left(L_{h}-1\right)+\left(L_{x}-1\right)+1-n \\
& y[n]=L_{h}+L_{x}-1-n=L_{y}-n
\end{aligned}
$$

5. No overlap. $n \geq L_{y}$. Amplitude is 0 .

Problem 2.3 System Identification. 27 points.
You are given several causal discrete-time linear time-invariant (LTI) systems each with unknown impulse response but you are able to observe the input signal $x[n]$ and output signal $y[n]$ for $-\infty<n<\infty$.

For reference, the unit step function $u[n]$ is defined as

$$
u[n]=\left[\begin{array}{lc}
1 & \text { for } n \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$y[n]$	$Y(z)$	Region of Convergence
$\delta[n]$	1	all z
$\delta\left[n-n_{0}\right]$	$z^{-n_{0}}$	$z \neq 0$
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$

(a) When input is $x[n]=\delta[n]-\delta[n-1]$, output is $y[n]=\delta[n]-2 \delta[n-1]+\delta[n-2]$. Find the impulse response $h[n]$. 9 points. This is from mini-project 2.

Since the input signal is two samples in duration and the output signal is three samples in duration, the impulse response is two samples in duration because $\boldsymbol{y}[\boldsymbol{n}]=\boldsymbol{h}[\boldsymbol{n}] * \boldsymbol{x}[\boldsymbol{n}]$.
Time-domain approach. $y[n]=\delta[n]=u[n]-u[n-1]$. Since $x[n]=u[n]$, we can write $y[n]=x[n]-x[n-1]$ and hence $h[n]=\delta[n]-\delta[n-1]$.
Deconvolution approach. Assume the LTI system is an FIR filter observed for $\boldsymbol{n} \geq 0$:

$$
y[0]=h[0] x[n]+h[1] x[n-1]+h[2] x[n-2]+\cdots h[N-1] x[n-(N-1)]
$$

All initial conditions are zero as a necessary condition for LTI properties to hold:
$y[0]=h[0] x[0]$ so $1=h[0]$ because $y[0]=1$ and $x[0]=1$ so $h[0]=1$
$y[1]=h[0] x[1]+h[1] x[0]$ which is $0=h[0]+h[1]$ so $h[1]=-1$
$y[2]=h[0] x[2]+h[1] x[1]+h[2] x[0]$ which is $0=h[0]+h[1]+h[2]$ so $h[2]=0$
We can check to see that $h[n]=\delta[n]-\delta[n-1]$ convolved with $u[n]$ is $\delta[n]$.
\underline{Z}-domain approach. An equalizer problem in disguise. We are trying to find an LTI system $h[n]$ so that $h[n] * u[n]=\delta[n]$. In the z-domain, $H(z) U(z)=1$ which means that $H(z)=\frac{1}{U(z)}=\frac{1}{\frac{1}{1-z^{-1}}}=1-z^{-1}$ for $z \neq 0$. Inverse z-transform is $h[n]=\delta[n]-\delta[n-1]$.
(b) When input is $x[n]=0.9^{n} u[n]$, output $y[n]=\delta[n]$ where $\delta[n]$ is the discrete-time impulse:

$$
\delta[n]=\left[\begin{array}{ll}
1 & \text { for } n=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the impulse response $h[n]$. 9 points. This is from mini-project 2.
This is from mini-project 2.
$\underline{Z-d o m a i n ~ a p p r o a c h . ~ F o r ~ i n p u t ~} x[n]=0.9^{n} u[n]$ and output $y[n]=\delta[n]$,

$$
\begin{gathered}
X(z)=\frac{1}{1-0.9 z^{-1}} \text { for }|z|>0.9 \text { and } Y(z)=1 \text { for all } z \\
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{\frac{1}{1-0.9 z^{-1}}}=1-0.9 z^{-1} \text { for } z \neq 0
\end{gathered}
$$

Taking the inverse z-transform of $H(z)=1-0.9 z^{-1}$ gives $h[n]=\delta[n]-0.9 \delta[n-1]$.
(c) When the input is $x[n]=u[n]$, the output is $y[n]$ is a rectangular pulse of L samples in duration:

$$
y[n]=\left[\begin{array}{cc}
1 & \text { for } 0 \leq n \leq L-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the impulse response $h[n] .9$ points.
Time-domain approach. $y[n]=\delta[n]=u[n]-u[n-L]$. Since $x[n]=u[n]$, we can write $y[n]=x[n]-x[n-L]$ and hence $h[n]=\delta[n]-\delta[n-L]$.

Deconvolution approach. Assume the LTI system is an FIR filter observed for $\boldsymbol{n} \geq 0$:

$$
y[0]=h[0] x[n]+h[1] x[n-1]+h[2] x[n-2]+\cdots h[N-1] x[n-(N-1)]
$$

All initial conditions are zero as a necessary condition for LTI properties to hold:

$$
\begin{aligned}
& y[0]=h[0] x[0] \text { so } 1=h[0] \text { because } y[0]=1 \text { and } x[0]=1 \text { so } h[0]=1 \\
& y[1]=h[0] x[1]+h[1] x[0] \text { which is } 1=h[0]+h[1] \text { so } h[1]=0 \\
& y[2]=h[0] x[2]+h[1] x[1]+h[2] x[0] \text { which is } 1=h[0]+h[1]+h[2] \text { so } h[2]=0 \\
& \text { If } h[n]=\delta[n], \text { then } h[n] * u[n] \neq y[n] . \text { So, we keep computing } h[n] \text { values. } \\
& y[L]=h[0] x[L]+h[1] x[L-1]+\cdots+h[L] x[0] \text { which is } \\
& 0=h[0]+h[1]+\cdots+h[L] \text { so } h[L]=0
\end{aligned}
$$

We check to see that $h[n]=\delta[n]-\delta[n-L]$ convolved with $\boldsymbol{u}[n]$ is $\boldsymbol{y}[n]$.
\underline{Z}-domain approach. We're finding LTI system $h[n]$ so that $h[n] * u[n]$ is rectangular pulse of L samples in duration. In the z-domain, $H(z) U(z)=1+z^{-1}+\cdots+z^{-(L-1)}$ which means

$$
H(z)=\frac{1+z^{-1}+\cdots+z^{-(L-1)}}{\frac{1}{1-z^{-1}}}=\left(1+z^{-1}+\cdots+z^{-(L-1)}\right)\left(1-z^{-1}\right)=1-z^{-L} \text { for } z \neq 0
$$

Taking the inverse z-transform gives $h[n]=\delta[n]-\delta[n-L]$. In Matlab, polynomial multiplication is computed using the conv command, e.g. conv([1 11111111], [1-1]).

[^0]```
x = [1 - -1]; %% Midterm 2.3(a)
y = [\begin{array}{llll}{1}&{-2}&{1}\end{array}];
%% Determine Nmax based on input signal
%% Finite-length length(y) - length(x) + 1
%% Infinite-length length(x)
if (length(x) == length(y))
 Nmax = length(x);
else
 Nmax = length(y) - length(x) + 1;
end
b = zeros(1, Nmax);
b(1) = y(1) / x(1);
for k = 2:Nmax
 numer = y(k);
 n = k;
 for m = 1:(k-1)
 if (n >= 1)
 numer = numer - b(m) * x(n);
 end
 n = n - 1;
 end
 b(k) = numer / x(1);
end
```

Problem 2.4. Filter Design. 22 points.
Consider designing discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filters. In this problem, all the poles and zeros will be real-valued.

In each part below, design a biquad by placing real-valued poles and zeros to achieve the indicated frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or notch) or indicate that no such biquad with real-valued poles and zeros could be designed.
Please use O to indicate real-valued zero locations and X to indicate real-valued pole locations.
With poles inside unit circle, we convert transfer function $H(z)$ into the discrete-time frequency domain by substituting $z=\exp (j \omega)$. We take the absolute value to get the magnitude response:

$$
H(z)=C \frac{\left(z-z_{0}\right)\left(z-z_{1}\right)}{\left(z-p_{0}\right)\left(z-p_{1}\right)} ;\left|H\left(e^{j \omega}\right)\right|=\left|C \frac{\left(e^{j \omega}-z_{0}\right)\left(e^{j \omega}-z_{1}\right)}{\left(e^{j \omega}-p_{0}\right)\left(e^{j \omega}-p_{1}\right)}\right|=|C| \frac{\left|e^{j \omega}-z_{0}\right|\left|e^{j \omega}-z_{1}\right|}{\left|e^{j \omega}-p_{0}\right|\left|e^{j \omega}-p_{1}\right|}
$$

Frequency (angle) of a pole near but inside unit circle indicates a peak in magnitude response at that frequency. From Euclidean distance $\left|e^{j \omega}-p_{0}\right|$ in the denominator, the minimum distance occurs when $\omega$ is equal to the angle of the pole $p_{0}$. Frequency (angle) of a zero on/near the unit circle indicate indicates a frequency that will be zeroed out/greatly attenuated.
(a) A first-order LTI IIR filter has zero $z_{0}$ and pole $p_{0}$; its transfer function is $H(z)=C \frac{\left(z-z_{0}\right)}{\left(z-p_{0}\right)}$ where $C$ is a constant. Give numeric values for zero $z_{0}$ and pole $p_{0}$ to give each magnitude response below, place the zero and pole on the pole-zero diagram, and explain your reasoning. 10 points.
(1) Lowpass filter

Pole

$$
p_{0}=0.9
$$

Zero

$$
z_{0}=-1
$$



(b) A second-order LTI IIR filter has zeros $z_{0}$ and $z_{1}$ and poles $p_{0}$ and $p_{1}$, and its transfer function in is $H(z)=C \frac{\left(z-z_{0}\right)\left(z-z_{1}\right)}{\left(z-p_{0}\right)\left(z-p_{1}\right)}$ where $C$ is a constant. Give numeric values for zeros $z_{0}$ and $z_{1}$ and poles $p_{0}$ and $p_{1}$ to give each magnitude response below, place the zeros and poles on the pole-zero diagram, and explain your reasoning. 12 points.
(3) Bandpass filter
Poles
$p_{0}=0$
$p_{1}=0$

## Zeros

$$
\begin{aligned}
& z_{0}=-1 \\
& z_{1}=1
\end{aligned}
$$


(4) Bandstop filter
Poles

$$
\begin{gathered}
p_{0}=-0.9 \\
p_{1}=0.9
\end{gathered}
$$

## Zeros

$$
\begin{aligned}
& z_{0}=0 \\
& z_{1}=0
\end{aligned}
$$




[^0]:    \%\% Deconvolution by Prof. Brian L. Evans.
    \% \% Keep in mind the first element in a
    \%\% MATLAB vector has index 1 and not 0 .

    응 USAGE
    \%\% FIR filters convolve the input signal
    $\%$ and the FIR filter impulse response
    $\%$ (which is equal to the filter coeffs).
    \%\% When input signal has finite length,
    \%\% the output is finite length:
    응
    \% Lengthofy $=$ Lengthofx + NumCoeffs -1 응
    \%\% Given finite-length signals $x$ and $y$,
    \%\% we can determine how many filter
    \%\% coefficients b there are.
    $\%$
    $\%$ If the input signal is infinite in
    \%\% length, then the output could be
    \%\% either infinite or finite in length.
    \%\% Define input and output signals. Give
    $\%$ an equal number of $x$ and $y$ values if
    \%\% $x$ is to be considered infinite length.

