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The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Midterm #2 Version 2.0

Date: November 7, 2023 Course: EE 313 Evans

Last, First

This in-person exam is scheduled to last 75 minutes.

Open books, open notes, and open class materials, including homework assignments and
solution sets and previous midterm exams and solutions.

Calculators are allowed.

You may use any standalone computer system, i.e. one that is not connected to a network.
Please disable all wireless connections on your calculator(s) and computer system(s).
Please mute all computer systems.

Please turn off all phones.

No headphones are allowed.

All work should be performed on the midterm exam. If more space is needed, then use
the backs of the pages.

Fully justify your answers. If you decide to quote text from a source, please give the
quote, page humber and source citation.

Problem | Point Value | Your score Topic
1 27 System Properties
2 24 Convolution
3 27 System Identification
4 22 Filter Design
Total 100
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Lecture Slides 8-3 to 8-6, 8-8 & 12-11 to 12-15

Problem 2.1. System Properties. 27 points.
Each discrete-time system has input x[n] and output y[n], and x[n] and y[n] might be complex-valued.

Determine if each system is linear or nonlinear, time-invariant or time-varying, and bounded-input
bounded-output (BIBO) stable or unstable.

You must either prove that the system property holds in the case of linearity, time-invariance, or stability,
or provide a counter-example that the property does not hold. Providing an answer without any
justification will earn 0 points.

Part | System Name System Formula Linear? | Time-Invariant? | BIBO Stable?
(@) First-Order y[n] = x[n] — x[n — 1] Yes Yes Yes
Difference Filter forn>0and x[-1] =0
(b) Amplitude y[n] = x[n] cos(@, n) Yes No Yes
Modulation

for n = 0 where @, is a constant

(c) Exponentiation y[n] = e*] No Yes Yes
for—oo<n<oo

Linearity. We’ll first apply the all-zero input test. If the output is not zero for all time, then the
system is not linear. Otherwise, we’ll have to apply the definitions for homogeneity and additivity.
All-zero input test is a special case of homogeneity a x[n] — a y[n] when the constant a = 0.

Stability. Bounded input |x[n]| < B < o would give bounded output |y[n]| < € < .

,,,,,,,,,,,,,,,,,

(a) First-Order Difference Filter: y[n] = x[n] — x[n — 1] forn = 0 and x[-1] = 0. 9 points. | Hw5.2
Linearity: Passes all-zero input test. Initial condition is zero, necessary for LTI to hold.
e Homogeneity: Input a x[n]. Output is
Yscatealn] = (a x[n]) — (a x[n]);pn-1 = ax[n] —ax[n—1] = ay[n]. YES.
e Additivity. Input x4[n] + x,[n]. Outputis
Yadaitive[n] = (x1[n] + x3[n]) — (x1[n] + x3[n])fn-1 = (x1[n] + x3[n]) — (x4[n —
1] + x3[n — 1]) = x4[n] — x4[n — 1] + x3[n] — x;[n — 1] = y4[n] — y,[n]. YES.
T-1: Input x[n — ne]. Output Yspifeeq[n] = x[n —np] + x[n —ny — 1] = y[n —n,]. YES.
Stability: |y[n]| = |x[n] — x[n — 1]| < |x[n]| + |x[n —1]| = B+ B = 2B. YES.
(b) Amplitude Modulation: y[n] = x[n] cos(@, n) for n > 0 where @, is a constant. 9 points. | p{ws2
Linearity: Passes all-zero input test. No initial conditions. oo |
e Homogeneity: Input a x[n]. Output y,.4ieqn] = (a x[n]) cos(@,n) = a y[n]. YES.
e Additivity. Input x4[n] + x,[n]. Outputis
Yadaitive[n] = (x1[n] + x2[n]) cos(@y n)
Yadditive[] = x1[n] cos(@¢ n) + x2[n] cos(@®y n) = y41[n] + y[n]. YES.
T-1: Input x[n — ng]. Output yspifeealn] = x[n — ng] cos(@y n) # y[n —ny]. NO.
Stability: |y[n]| = |x[n] cos(@, n)| < |x[n]| |cos(@, n)| < B because |cos(@q n)| < 1. YES.
(c) Exponentiation: y[n] = e*™ for — o0 < n < . 9 points.
Linearity: Does not pass the all-zero input test; i.e., when x[n] = 0, y[n] = e® = 1 = 0. NO.
T-1: Input x[n — ng]. OUtPUL Yepifrealn] = el = y[n — ny]. Pointwise systems are T-1. YES.
Stabi"ty: |y[n]| — |ex[n]| — |exreal[n]+jximag["]| — |exreal[n]||ejximag[n]| < |exreal[n]| < e|xreaz[n]| <1+e8
because e” is a non-negative monotonic function of real variable v. YES.
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F17 Midterm 2.1(b) & 2.2(b) and F21 Midterm 2.2

SPFirst Sec. 5-6, 8-2 |

Problem 2.2 Convolution. 24 points. b b

ffffff

(@) Compute and plot y[n] = h[n] * x[n] using the discrete-time rectangular pulses below. 12 points.

hln] xn] Awra@v
1 1
U B R PO
3210123456 3210123456 _¢g 0o

y[n] = h[n] * x[n Z h[k] x[n — k]

l...

3210123456

k=—c
yln| = h{0] x[n| + h{1] x[n = 1] = x[n] + x[n — 1] Alternate solution using MATLAB:
(b) Compute and plot y[n] = h[n] * >§[n] using the discrete-time ho= (11
rectangular pulses below. 12 points. x=[1111];
_ y = conv(h, x); $ [1 2 2 2 1]

pn] = [L forosn<il,—1

0 otherwise
x]=[F forosnsLi—=1 1 e ashw 1@

0 otherwise =~ t :

where L, < L, and both L, and L, are positive integers. Give your answer in terms of L, and L,.

Define L,,;, = min(Ly, L,) and L,,,, = max(Ly, L,). Convolution hlA]

result is a causal trapezoid of L, = L, + L, — 1 samples in duration.
Lp—1
y[n] = h[n] « x[n Zh[k [n— k| Zh ‘

k=—c

There are five cases for flip-and-slide convolution to conS|der 321012 N, 1
x[n-K]

No overlap. n < 0. Amplitude is 0.
Partial overlap. 0 <n < L,,;, —1. Amplitude is (n + 1). Initial

overlap of one sample at n = 0 with a product of one. Each shift by 1
one in n adds one more overlapping sample with product of one. l ‘ ‘ ‘ K
y(n]

=) hlklxln—k] = ) 1=(@+1) n2 n o ne2
k=0 k=0 (Ni-1) n-1 n+1
. Complete overlap. Ly —1 <1 < Ly, — 1. Amplitude is L,,;,.
Here, L,,,;;, sSamples overlap, and each sample has a value of one.
Partial overlap. Ly, <n <L, —1. Amplitudeis L, —n. Lnin T ® @@ 7.
Amplitude reduies {)y one each time n is incremented. yinl 5 o’ :
o
y[n] = Z 1=Up-D+UL,—D+1-n ’
k=n—(Ly—1) T n
yinl=Ly+L,—1-n=L,—n —o-0-0 ) 1:_._

: . 32101 !
No overlap. n = L,. Amplitude is 0. .

Lmin -
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Problem 2.3 System Identification. 27 points. -
y[n] Y(2) Region of
You are given several causal discrete-time linear time-invariant Convergence
(LTI) systems each with unknown impulse response but you are
. . . é[n] 1 all z
able to observe the input signal x[n] and output signal y[n] for
—o<n< o, d[n—ny] z "o z#0
For reference, the unit step function u[n] is defined as uln] n 1 - |zl > 1
f— Z_
1 forn=>0
uln] = 0 otherwise a" u[n] ; |zl > |al
1—az!

(@) When input is x[n] = 6[n] — §[n — 1], output is y[n] = &[n] — 2 §[n — 1] + 6[n — 2]. Find the
impulse response h[n]. 9 points. This is from mini-project 2.

Since the input signal is two samples in duration and the output signal is three samples in
duration, the impulse response is two samples in duration because y[n] = h[n] * x[n].

Time-domain approach. y[n] = 8[n] = u[n] — u[n — 1]. Since x[n] = u[n], we can write
y[n] = x[n] — x[n — 1] and hence h[n] = &[n] — §[n — 1].
Deconvolution approach. Assume the LTI system is an FIR filter observed forn > 0 :
y[0] = h[0] x[n] + h[1] x[n — 1] + h[2] x[n — 2] + - R[N — 1] x[n — (N — 1)]
All initial conditions are zero as a necessary condition for LTI properties to hold:
y[0] = h[0] x[0] so 1 = h[O0] because y[0] = 1 and x[0] = 1s0 h[0] =1
y[1] = h[0] x[1] + h[1] x[0] which is 0 = h[0] + h[1]so h[1] = —1
y[2] = h[0] x[2] + h[1] x[1] + h[2] x[0] which is 0 = h[0] + h[1] + h[2] SO h[2] = 0
We can check to see that h[n] = §[n] — §[n — 1] convolved with u[n] is §[n].
Z-domain approach. An equalizer problem in disguise. We are trying to find an LTI system

h[n] so that h[n] * u[n] = §[n]. In the z-domain, H(z) U(z) = 1 which means that
H(z) = % = } =1 -z 1forz # 0. Inverse z-transform is h[n] = 6[n] — §[n — 1].
1-z-1

(b) When input is x[n] = 0.9™ u[n], output y[n] = §[n] where §[n] is the discrete-time impulse:

1 forn=0
8lnl = [0 otherwise

Find the impulse response h[n]. 9 points. This is from mini-project 2.
This is from mini-project 2.

Z-domain approach. For input x[n] = 0.9™ u[n] and output y[n] = &[n],

X(2) = 120951 for |z| >0.9and Y(z) = 1forall z
Y@ 1 _ 1
H(Z)_X(z)_ 1 =1-09z forz+0
1-09z1

Taking the inverse z-transform of H(z) = 1 — 0.9 z~ ! gives h[n] = 8[n] — 0.9 6[n — 1].



(c) When the input is x[n] = u[n], the output is y[n] is a rectangular pulse of L samples in duration:

Y 0 otherwise

Find the impulse response h[n]. 9 points.

Time-domain approach. y[n] = 8[n] = u[n] — u[n — L]. Since x[n] = u[n], we can write
y[n] = x[n] — x[n — L] and hence h[n] = §[n] — §[n — L].

Deconvolution approach. Assume the LTI system is an FIR filter observed forn > 0 :
y[0] = h[0] x[n] + h[1] x[n— 1]+ h[2] x[n — 2] + - h[N — 1] x[n — (N — 1)]
All initial conditions are zero as a necessary condition for LTI properties to hold:
y[0] = h[0] x[0] so 1 = h[0] because y[0] =1 and x[0] =1so h[0] =1
y[1] = h[0] x[1] + h[1] x[0] whichis 1 = h[0] + h[1]sOoh[1] =0
y[2] = h[0] x[2] + h[1] x[1] + h[2] x[0] which is 1 = h[0] + h[1] + h[2] so h[2] = 0
If h[n] = &[n], then h[n] * u[n] # y[n]. So, we keep computing h[n] values.
y[L] = h[0] x[L] + h[1] x[L — 1] + ---+ h[L] x[0] which is
0 = h[0]+ h[1]+ -+ h[L]SOR[L] =0
We check to see that h[n] = 8[n] — 6[n — L] convolved with u[n] is y[n].
Z-domain approach. We’re finding LTI system h[n] so that h[n] = u[n] is rectangular pulse
of L samples in duration. In the z-domain, H(z) U(z) = 1 + z7! + --- 4+ z=®=D which means
1+z 1+ +27CD
_1
1-—2z1
Taking the inverse z-transform gives h[n] = §[n] — 8[n — L]. In Matlab, polynomial
multiplication is computed using the conv command, e.g.conv([1111111],[1-1]).

H(z) =

=(1+z'++zEV)1-zH=1-zLforz=0

o\°
o\°

o° oe A° d° 0 0° A° A° A° A° A O ° O° A° o° d° o oo oe
o° oe A° 0° o 0° A° A° A° A° A O ° O° O° o° d° o oo oe

o
o

Deconvolution by Prof. Brian L. Evans. x=[1 -1171; $% Midterm 2.3 (a)
Keep in mind the first element in a y=1[11 -2 11;
MATLAB vector has index 1 and not O.
%% Determine Nmax based on input signal
USAGE %% Finite-length length(y) - length(x) + 1
FIR filters convolve the input signal %% Infinite-length length (x)
and the FIR filter impulse response if ( length(x) == length(y) )
(which is equal to the filter coeffs). Nmax = length(x);
When input signal has finite length, else
the output is finite length: Nmax = length(y) - length(x) + 1;
end
LengthOfy = LengthOfx + NumCoeffs - 1
b = zeros(l, Nmax);
Given finite-length signals x and vy, b(l) = y(1) / x(1);
we can determine how many filter for k = 2:Nmax
coefficients b there are. numer = y(k);
n = k;
If the input signal is infinite in for m = 1: (k-1)
length, then the output could be if (n >= 1)
either infinite or finite in length. numer = numer - b(m) * x(n);
end
Define input and output signals. Give n=n-1;
an equal number of x and y values if end
x is to be considered infinite length. b(k) = numer / x(1);
end




Problem 2.4. Filter Design. 22 points. S o eem e e e e T

Consider designing discrete-time linear time-invariant (LTI) infinite impulse response (1IR) filters.
In this problem, all the poles and zeros will be real-valued.

In each part below, design a biquad by placing real-valued poles and zeros to achieve the indicated
frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or notch) or indicate that no such
biquad with real-valued poles and zeros could be designed.

Please use O to indicate real-valued zero locations and X to indicate real-valued pole locations.

With poles inside unit circle, we convert transfer function H(z) into the discrete-time frequency
domain by substituting z = exp(j ®). We take the absolute value to get the magnitude response:
Hiz) = ¢ )@= 2) (& — z)( ~2z)| _ o [ = zolle” — 2|
(z—po)(z—p1) (e/* — po)(e/” —p1) le/* — pollel® — p4
Frequency (angle) of a pole near but inside unit circle indicates a peak in magnitude response at
that frequency. From Euclidean distance |/ — p,| in the denominator, the minimum distance
occurs when w is equal to the angle of the pole p,. Frequency (angle) of a zero on/near the unit
circle indicate indicates a frequency that will be zeroed out/greatly attenuated.

|H(e/)| = |C

(@) A first-order LTI IR filter has zero zoand pole po; its transfer function is H(z) = C g_—;";where C
—ro
Is a constant. Give numeric values for zero zoand pole po to give each magnitude response below,

place the zero and pole on the pole-zero diagram, and explain your reasoning. 10 points.

(1) Lowpass filter Im(z) (2) Highpass filter Im(2)
Pole_ 0o Pole

Po =" o| Re@) po = —0.9 o Re(2)
Zero_ -~ Zero ”

ZO —_ _1 ZO — 1

(b) A second-order LTI IIR filter has zeros zoand z1 and poles po and p1, and its transfer function in is

Hz) =cC % where C is a constant. Give numeric values for zeros zoand z1 and poles po
—ro —P1
and p1 to give each magnitude response below, place the zeros and poles on the pole-zero diagram,

and explain your reasoning. 12 points.

(3) Bandpass filter Im(z) (4) Bandstop filter Im(z)
Poles Poles

po= 0 po = —0.9 @

p1= 0 L@ Re(z) pri= 09 X x Re(2)
Zeros Zeros

ZO = _1 ZO = O




